tool-banner
工具目录
首页>工具目录>

蛋白热稳定性计算

TemBERTure
蛋白热稳定性计算
抗体功能预测
2025-08-11
立即尝试

TemBERTure

1 简介

蛋白质的热稳定性(thermostability)在生物技术领域具有重要意义,尤其是在制药、食品和生物燃料生产等行业中,热稳定性蛋白质能够加速化学反应,降低生产成本。然而,传统的实验方法用于评估蛋白质热稳定性不仅耗时、昂贵,且难以大规模扩展,导致可用的蛋白质热稳定性数据有限。

研究者开发了TemBERTureDB1,数据来自于Meltome Atlas实验2、UniProtKB3、BacDive4、NCBI5,一个包含超过48,000个蛋白质序列的数据库,涵盖13种物种的热稳定和非热稳定蛋白质, 共600,000条数据。

图1. A图是TemBERTureDB的构成,B图为TemBERTure的架构示意图,其中TemBERTureCLS使用分类预测头,TemBERTureTm使用回归预测头

基于现有的protBERT-BFD6语言模型,通过adapter-base7,8的方法进行微调,开发出TemBERTureCLS和TemBERTureTm分别用于预测蛋白质的热稳定性类别和熔点温度。TemBERTureCLS在预测热稳定性类别方面表现出色,准确率为0.89,F1分数为0.9。TemBERTureTm在预测熔点温度方面存在偏差,呈现出双峰分布,但其在预测蛋白质的热稳定性类别方面具有较高的准确性。

图2. TemBERTureCLS性能表现

图2. TemBERTureTm性能表现

2 参数说明

输入待预测的序列/fasta文件

3 结果说明

列名 说明
Sequence 输入的序列
Tm 模型预测的蛋熔点温度值(Melting Temperature)
Thermostability Classification 模型预测的蛋白热稳定性类别:Thermophilic与Non-thermophilic
Thermophilicity Prediction Score 模型预测的蛋白嗜热性概率评分,数值在0-1.0之间,越大表示蛋白嗜热的概率越高

4 参考文献

[1] Chiara Rodella, Symela Lazaridi, Thomas Lemmin, TemBERTure: advancing protein thermostability prediction with deep learning and attention mechanisms, Bioinformatics Advances, Volume 4, Issue 1, 2024, vbae103. https://doi.org/10.1093/bioadv/vbae103
[2] Jarzab A, Kurzawa N, Hopf T et al. Meltome atlas—thermal proteome stability across the tree of life. Nat Methods 2020;17:495–503. https://doi.org/10.1038/s41592-020-0801-4
[3] The UniProt Consortium. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res 2023;51:D523–31. https://doi.org/10.1093/nar/gkac1052
[4] Reimer LC, Sardà Carbasse J, Koblitz J et al. BacDive in 2022: the knowledge base for standardized bacterial and archaeal data. Nucleic Acids Res 2022;50:D741–6. https://doi.org/10.1093/nar/gkab961
[5] Sayers EW, Bolton EE, Brister JR et al. Database resources of the national center for biotechnology information. Nucleic Acids Res 2022;50:D20–6. https://doi.org/10.1093/nar/gkab1112
[6] Elnaggar A, Heinzinger M, Dallago C et al. ProtTrans: toward understanding the language of life through self-supervised learning. IEEE Trans Pattern Anal Mach Intell 2022;44:7112–27. https://doi.org/10.1109/TPAMI.2021.3095381
[7] Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., Attariyan, M. & Gelly, S.. (2019). Parameter-Efficient Transfer Learning for NLP. Proceedings of the 36th International Conference on Machine Learning, in Proceedings of Machine Learning Research 97:2790-2799 Available from https://proceedings.mlr.press/v97/houlsby19a.html
[8] Poth et al., Adapters: A Unified Library for Parameter-Efficient and Modular Transfer Learning. EMNLP 2023. https://aclanthology.org/2023.emnlp-demo.13/

0